L.EG'@.'UTY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made avaiiable to expedite
the availability of information on the
research discussed herein.

1



LA-UR -39-760 (oNF - 3906493
Recaiy. X JSTI

APR O 6 1989

LCs Alamos Nationai Laboratory s operated by the Lniversit, of Canlornia for the Uniled States Departmeni ot Enargy under contract W-7405-ENG-136

LA-UR--89-760

DE8S 009407

TITLE THE DYNAMICAL BEHAVIOR OF CLASSIFIER SYSTEMS

AUTHOR(S) Step@e Forrest

SUBMITTED TO Third International Conference on Genetic Algorithms,
Washington, DC, June 4-7, 1989

DISCLAIMER

This report way prepared as an account of work sponsored by an agency of the Umited Stues
Guoverninent  Neither the U'nited Ntates Guverament nor any agency thereal, nor any of therr
emplovees, makes any warranty, express or unmphied, or assumes any legal hahihity o responsy
ality tor the acvuracy. completeness or usefulness of any informaton, apparatus. product, of
prwess disclosed, or represenis that 1y use would not ifninge privately owned nghts Refer
ence herem to any specifu commercial product, process, or setviee hy trade name, trademark,
manulacturer or ntherwise does not necessanly comtitute or imply its endonsement, recom
mendation o1 favoning by the United States Govermment or any agency theteot  The views
and opimons of authors expressed hercin do oot necessanly state o rellect thaae ol the
Umited States Government or any agency thereol

Ny accnprance ot 1h g it 'm the publishsr recognizes that the 1) S Governmant relams a4 naneag lusive rayaity free heansm 1o publish or raprodut &
the puhtateg 'oree b tag contabigtion or 1o Allow others to do so tor 1S tiovernmaent [ poses

The oy Acgman NP anal Labos Aty cenggests that the publinhar qdeniity thin articie Ay work perforead under he avtpieas ol the ti 'S Departmant of | nergy

e Al mseR
L OS AIGIMAOS LosAamos NatonalLaboratory

{

[RRUTVRTIRN WY WY
LTI LR T - o


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Comments Welcome Version 1.0

The Dynamical Behavior of Classifier Systems”

Stephanie Forrest, Center for Nonlinear Studies, Los Alamos National Laboratory!

John H. Miller, Santa Fe Institute and Carnegie-Mellon University?

30 January 1989
Revised: 10 February 1989

*Acknowledgments: The financial support of the Senta Fe Institute and Los Alamos Na-
tional Laboratory are gratefully acknowledged. Computational support was provided by
the Knowledge Systems Laboratory at Los Alamos. Rick Riolo was kind enough to supply
us with some sets of classifiers. The paper also benefited from early discussions with Johu
Holland, and extended discussions with Stuart Kauffman.

' CNLS, MS-B258, Los Alamos National Laboratory, Los Alamos. NM 87545 (Sxfotlanl.gov).
! Santn Fe Institute, 1120 Canyon Road, Santa Fe, NM 87501 ( Millerstisantafe.edn),



1. [ntroduction

Classifier systems are quite complicated, in terms of both their components and be-
havior. This complexity is understandable given the wide spectrum of activity they are
intended to model. Urfortunately, the complexity of these systems also makes it difficult
to understand them analytically. Previous analysis has focused on specitic components of
the classifier system, for example. the genetic algoritihm or the bucket brigade. The lack
of a unified theory has led users of these systems to rely on ad hoc methods for choosing
representations and parameter settings. Recent results (Riolo, 1988) indicate that classi-
fier systems can be very sensitive to particular encodings and parameter choices. In this
paper. we propose a methodology for studying the interactions among various components
of the classifier system architecture.

Classifier system behavior can be studied by analyzing an equivalent dynanical sys-
tem. The dynamical systems perspective has itnportant consequences for classifier systewms:
fundamental properties emerge which may enhance or destroy the abilities of such systems.
Accompanying the purely descriptive elements of the analysis, are important prescriptive
ideas. Diftferent aspects of classifier systems can be directly linked to these emergent dy-
nainical properties with implications for the effective design of classifier systems. A varicety
of questions can be addressed using the methodology developed here, including, but not
limited to: How many classifiers are required in the system before interesting behavior can
occur? What is the likelihood that chains of classifiers will form?” How dense will these
chains be? What is the impact of specificity on these properties? What is the impact of
learning and representation on the dynamical behavior? How stable are these systems?

By viewing a set of classifiers as a network, it 1s possible to mmvestigate the topological
properties of various collections of classifiers. The connection between classifiers and net.
works is well known (Forrest, 1985). Section 2 defines a mapping between classifier systems
and a class of finite automata called random Boolean networks { IKauthinan, 1968). The v
namicel properties of randoin Boolean networks have been studied extensively (Kautfiman,
1984) (Derrida and Stauffer, 1986) ( Derrida and Weisbuch, 1986), and general techmques
have been developed for determining these properties. This work shows that dynamical
behavior can be characterized by a set of rmergent properties. [n this paper, we link these
properties to important aspects of classifier syvstemn hehavior.

The paper first. develops the mapping between classifier systems and B olean networks,
and discusses various emergent properties. Section 3 presents prelumnary numenical re
sults, and Section 4 discusses the implicatioas of this approach.

2. Classiflers as Dynamical Systems

The analysis relies on three premises: (1) a mapping between classifier systems and
Boolean networks can be defined that preserves the relevant dynamieal properties of ¢las
sifier systems, (2) the dynamic behavior of Boolean networks is dominated by a et of
emergent properties inherent in the network structure, and (3) these emergent propertie:
have important implications for the behavior of classifier systems. These three premae
are diseussed 1n order,

A1 Random Boolean Networks

A Boolean network consists of aset of nodes. cach of wlieh s dwo pos aihle <rares 0
or 1. T'he state of any given node at e 0y T e determined byoacsabeeet of the aates of



the other nodes in the network (those with directed arcs into the given node) at time ¢.
A predetermined (and time invariant) Boolean function is associated with each node. The
variables of the function correspond to the siates of the connected nodes. The Boolean
functions can varv for different nodes, as can the nunber and location of the input nodes.
A three-node Boolean network is shown in Figure 1.
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Figure 1. An Example Boolean Network

A randoin Boolean network (RBN) is a Boolean network in which the councetivity
pattern and the Boolean functions are assigned stochastically. For example, an RBN could
be formed for an n node network, where every node is randomly connected to two other
nodes by either an AIND or an OR function, also selected randomly. A specification, such as
the one just mentioned, defines one class of RBNs -each individual member of a partienliv
class will have similar emergent properties. AL iniportant question is whether classitier
systems correspond to a specific class of RBNs.

2.2 A Mapping from Classifier Systems to Boolean Networks

The mapping from a classifier system ('S} to a Boolean network (BN) is sdetined in
stnges. Initially, CS is a simple two-condition classifier systetn with negation, withont
pass-through, and with no provisions for limited size message lists ov bidding. Negarion s
only allowed on the second condition. The mapping is defined ns ollows:

1. Assign one node in BN for every possible message that could be posted by €S or

its environment. Ench node will be in State 1 exactly when the corresponding messaee
would be posted to the message list in CS, and it will be in State O otherwise. The Boolein

function mssocinved with each node enforces this hebavior.
2. For ench classifier ¢ € CS (¢, 18 of the form Conditvon £, Condation- 2, Actron,),

construct the Boolean function f, for the node corresponding vo Actron, sach than 1,



true whenever ¢; would fire. Specifically f, will be of the form ((mlyvmlv.. )A{(m2; v
m2; V ...)) where the ml, and and m?2; are the sets of messages that match Condition-1
and Condition-2 respectively. f; will be of the form ((m;Vmy V. . )JA~(m2;vm2; V... i)
if .he second condition is negated.

3. The node corresponding to Action, is assigned f, as its Boolean function if there
is no other Boolean function defined on that node: otherwise, f, is combined disjunctiveiy
with the existing Boolean function. This latter situation arises when two or more classitiers
have identical action messages.

[+ is straightforward to show that this mapping preserves the functional behavior of
a simple classifier system. That is, for eack possible state of the message list at time ¢
(corresponding to a set of nodes in the Boolcan network that are in State 1). the messaye
list produced by the classifier system at time ¢t + 1 will be equivalent to the sct of nodes in
State 1 at time ¢ + 1.

To extend the mapping for pass-through, we assume that the pass-through operation
i3 defined on the first condition. A classifier with pass-through is effectively distributed
across its various output nodes. Specifically,

4. For each ¢;, construct the set A, of all ¢,’s possible action messares, and for vach
a, € A, construct the set M1,, of possible activating messages for that action message.
Each message in M1,, must satisfy both the constraints (i.e. match) of Condition-1 of
¢, and the output message a,. The set M2, is constructed by taking all messages that
could possibly match Condition-2. The result is a set of < a,, M1,,, M2, > triples for each
classifier c;.

5. For each < a., M1,,, M2, > triple, the loolean function at node a; is augmented
as in Step 3 with a clause that specifies the conditions under which the output message o,
would be produced.

Figure 2 shows the mapping for three classifiers. The three-bit two-condition classiticr
1#0, #01; 000 corresponds to the Boolean function ({100 V 120) A (001 Vv 101)) on the 000
node. The classifier 004, -111;11# is distributed across the nodes 110 and 111 which
correspond to the possible passed-through nessages that it could produce. This classitier
also illustrates the use of negated conditions. The classifier 001, 110 ; 110 shares ap output
node with the second classifier; the Boolean expressions for each classifier are combined
disjunctively.

By restricting the number of nodes that can be in the “1" state at any instant, message
lists of various restricted sizes can be simulated. In the case where there are more nodes
whose Boolean funec!ions evaluate to | than there are slots on the message list, a nonde:
terministic procedure is used to select which nodes are actually set to State 1 o the case
where there is a strength associated with each assitier, that strength can he appottioned
asmong the various Boolean functions that implement the classiier. The Boolean funetion
associnted with each node then becomes a probablistic function of the strengths associated
with the various clauses.

The Boolenn networks that correspond to elassifier systems have inportant stinetneal
characteristics. There are two types of nodes in these systems: iniernal and external
External nodes have empty Boolean functions, and correspond to messages that mighit e
generated by the input interface of the classifier system. taternal nodes have nonewpry
Booiean functions and eorrespond to messages that ean be sent by o given clacatior In
Figuie 2. Nodes 000, 110, and 111 are internal and the remaming nodes e external
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Figure 2. An Example Mapping

The Boolean functions defined on internal nodes have a regular structure; this can be an
important determinant of global behavior for certain RBNs

Once a classifier system has been mapped into arn equivalent Boolean network, irs
dynainic behavior can be studied. The state of each node corresp onds to whether or not
its message is currently posted on the classifier systems messcge list. By setting the nodes
in the Boolean network to correspond with the initial set of messages present in the system,
temporal behavior of a classifier system can be observed by iterating the network. Messages
from the input interface are mapped to the external nodes cf the network. Since external
nodes have empty Boolean functions, none of them will tire after the initial time step. For
some (uestions, such as determining the amount of internal connectivity in the network,
external messages are not particularly relevent. For other questions, input nesseges from
the environment can be simulated by periodically firing some of the external nodes during
the iterations.

The configuration! of a purticular classifier system has a direct impact on iis Boolean
network structure. The number of iiternal nodes in the network is related to the number
of claysifiers in the system and to the use of pass-through. An internal node exists for every
unique message sent by a classificr. Thus. larger numbers of classifiers or the use of pass:
through will in general imply more internal nodes. However, as the nwnber of classifiers
increases, the likelihood of duplicate messages increases, inplying that the number of
internal nodes will not incrense exactly linearly with size.? The particular Boolean function

! Where configuration includes the number of classifiers, negation, pass-through, the proporton of #'< the tvpe
of learning, etc.

» . .
< In an N-bit systemn there are 256 posmible measages, and therefore even mudest numbera ol chassifiers, sav, 00,
may brgin to naturate the systemn.



and the number of input arcs on each internal node are related to the number of input
conditions from various classifiers and the proportion of # symbols. As the number of
#s increases in a condition without pass-through, the connectivity of the corresponding
node should increase exponentially. Pass-through complicates the calculation, however,
because the number of output nodes is increasing at the same time (but not necessarily
the same rate) as the number of input messages. Different learning algorithms may also
affect network structure. For example, some algorithms may encourage convergence around
some sets of important messages. The details of different classifier system configurations
and their network properties are explored in Section 3.

A particular classifier system can be mapped to an equivalent Boolean network. Be-
cause different configurations of (randomly generated) classifier systems have distinct struc-
tural properties, we can study the dynamics of any particular configuration by generating
RBNs with the structural properties (mean number of input arcs, proportion of internal
nodes, etc.) corresponding to that configuration. It may be possible to use a similar
approach for classifier systems after learning. This will require a careful study ot the dif-
ferences between classifier systems beforc and after learning. Of particular consequence is
how the overall topological structure (in the mapped representation) changes after learn-
ing. For example, some learning algorithms might take advantage of existing topological
structures (cycles, etc.) and build associations between the Input/Output interface and
the existing structures. Others might construct new topological structures that are signif-
icantly different from those that exist in randomly generated classifier systems. As shown
above, different contigurations will imply different underlying network structures. By find-
ing the emergent properties of these different structures, a link between system design and
performance can be derived and exploited.

2.3 Emergent Properties of Random Boolean Networks

The emergent properties of RBNs depend on the number of nodes. the number of con-
nections between each node, and the Boolean functions emnployed (Kauffinan, 1984). Once
these characteristics are known, the typical behavior of different classes of such networks
can be firmly established. The configuration of a classifier system will have a direct effect
on the aforementioned network properties. Thus, an understanding of the dynamics of
Boolean networks vis-a-vis these properties, provides insights into the dynamics of various
types of classifier systems.

A given Boolean network with n nodes has 2" possible states ({0,1}"). The Boolean
functions and connections among nodes imply a deterministic state transition tunction.
Given that the network is deterministic and finite, .t must eventually fall into some state
cycle. Different initial conditions may, however, cause the network to enter differcut state
cycles. All points in the state space are either part of some state cycle, or they lic on a
trajectory that leads to a cycle.

Although this is the first analysis of Boolean networks that correspond directly to
classifier systems, networks with similar structures have been analyzed ( Kauthiman, 195-1),
The results of these analyses (Kauffman, 1984, pp. 151-2) indicate a variety of important
dynamical aetwork properties. For example, the actual number of distinet state eyveles
15 on the order of the square root of the number of nodes. For i network with 10,000
nodes, this would imply only 100 distinet state cyeles. Cyele lengths are also iy preally

small, with median eyele length agnin on the order of n?? where the theoretieal wnsineun

fully |



is 2" (in the 10,000 node case this is the difference between 100 and 2!%900) A |arge
fraction of the nodes (60-80%) tend to fix to either always on or always off in a given
state cycle. Different cycles tend to have similar states, with hamming distances® between
1-10%. State cycles tend to be stable to most one node perturbations, i.e., if one node
in the network randomly changes state, the network usually does not enter a new state
cycle. Many of these properties have direct implications for classifier systems. Moreover,
some unexplored properties of these networks are also relevant to classifier systems. for
example: the impact of randomly firing external nodes, the propagation paths (the Boolean
net analog of an execution trace) caused by the activation of particular subsets of nodes,
the use of probabilistic Boolean functions and restricted size message lists, recording basins
of attraction for different sets of external nodes (for example, if any combination of external
messages led to the same basin of attraction, it would indicate that the classifier system
wasn't differentiating well between various inputs), measuring the lengths of transients
(transients are likely to be quite important for classifier systems with frequent input from
the environment), and state cycles for sub-networks (global states are likely to be less
important than states for functional sub-pieces of a network).

2.4 The Importance of Emergent Properties to Classifier Systems

The preceding discussion suggests that the dynamic behavior of classifier systems are
dominated by a set of emergent properties. The existence of these properties may impose
major constraints on the performance of any classifier system. Therefore, an understanding
of the link between some of the emergent properties and classifier behavior is important.

The classifier system’s architecture derives much of its power through the formation
of chains of rules. Such chains support internal reasoning processes that allow a classifier
system to exhibit more than stimulus/response behavior. The sub-state cycles (cycles in
sub-networks) that emerge in Boolean networks are closely related to chains in a classifier
system. Any cyclic chain of classifiers will correspond to a cycle of states in the Boolean
network, and any cycle of activity in a group of nodes will correspond to some set of
classifiers activating one another. Based on this connection, we predict that the likelihood
of chain formation in classifier systems is closely tied to the system’s configuiation. Critical
values probably exist that catalyze the formation and survival of chains. Section 2.3
indicates that the number of classifier chains that form is relatively small and that they
tend to have few members. The ability of classifier systems to exhibit sclf-sustaining
activity, that is, to generate internal activity in the absence of external input, is 1so likely
tied to certain configuration parameters. At some level of self-sustaining activity, systems
should be abie to operate with little or no environmental input and be able to form large
internal reprzsentations. Toc mnuch internal activity is expected to hurt performance, since
the environment is a crucial component of learning in classifier systems.

If the Boolean retworks corresponding to classifier systems have similar properties as
those described in the literature, most classifier chains will be very similar to one another
in terms of the actual messages that are posted. Once a chain is entered, it should be
stable to small perturbation. 5. If a perturbation does invoke a new chain, typically only
a small subset of the existing chains are likely ¢ be available. That there is a tradeott

Y Two global states of a Bonlean network can be compared by assigning each node in the network vue bit position
tn « bin: :y string and setting the bit position according to the current state of the corresponding wade The
hamming distance between two such strings then provides a measure of similanty between the two states

<
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between system stability and ultimate performance. Stable systems will be able to operate
gracefully in the presence of unusual external stiniuli, and under the influence of changing
structure due to learning. Nonetheless, the difficulty of implementing new chains may be
problematic in excessively stable systems.

Finally, the potential for most of the messages (i.e., the nodes corresponding to mes-
sages) to become fixed (either on or off) exists — a phenomenon called “freezing.” By
considering the truth table that defines a particular Boolean function, it is possible to
determine which combinations of input values produce 1's and which ones produce 0's.
Thus, for a binary disjunction, there are 75% 1's and 25% 0’s in its truth table, and given
random inputs the result will be a 1 3/4 of the time and a 0 1/4 cf the time. For Boolean
networks, an important statistic is this ratio of 1's to 0’s in the functions defined on the
nodes. Boolean functions that have either an abnormally high or low percentage of ones
in their truth table, tend to freeze ceieris paribus. Frozen nessages may hinder attempts
at fcrming a system that can actively respond to new situations. Moreover, algorithms
that reward or penalize classifiers based only on the presence or absence of the associated
message at a given time, may be adversely affected by frozen messages. A close link be-
tween the form of classifier conditions and the percentage of ones is devcloped in the next
sections.

The above elements combine into a potentially powerful descriptive and prescriptive
methodology. Many of the important performance characteristics of a classifier system are
likely 0 be related to its dynamical behavior. Through the use of the above mapping,
connections between system design and dynamical behavior can now be derived. This
connection can be used both to understand current system performance and in the design
of new systems with improved performance characteristics.

3. Results

The emergent properties of a Boolean network depend on a relatively small set of
defining characteristics. The major characteristics which determine a network's behavior
are the number of nodes and their associated Boolean functions. A complete analysis
requires both an understanding of how different parameter choices in ctandard classifier
systems .nfluence these properties, as well as how these properties affect the dynamic
behavior of the network. The results reported here are preliminary, but they tocus on both
of these issues.

All experiments were conducted using an 8-bit classifier system. An 8-bit svstem,
rather than more common 16- or 32-bit systems, was used in order to simplify computa-
tion. From the Boolean network perspective, an 8-bit classifier system with 20 classifiers
is roughly equivalent to a 16-bit classifier system with over 1000 classifiers. We expect
that relatively simple scaling relations exist that will allow the results to be applied to
arbitrarily-sized systems. Each reported data point is a rnean computed from 30 randomly
generated classifier systems.

3.1 Internal and Ezternal Nodes

The distinction made in Section 2.2 hetween external and internal nodes separates
messages produced by the environment irom internal message-passing. For ench network
there are 256 possible nodes (messages), but not all of them are part of every Boolean
network. If there were a message, (or example, that the environment never posts and



no classifier can respond to, then the node corresponding to that messagr would not be
included in the network. Thus, there are two values of interest: the namber of actual
internal nodes and the number of actual external nodes. For the structural properties
studied in the following sections, the ratio of internal to external ncdes is the of iuterest,
and it is shown in Figure 3. The ratio should remain constant as the number of classifiers
increases (since each new classifier creates new internal and external nodes at the same
rate), until the system begins to saturate. At saturation, the addition of a new classifier
will not always produce a constant number of new nodes, since the nodes used by the
classifier may already be in the network. The figure shows that the ratio increases gradually.
indicating that external message nodes saturate more quickly than internal nodes.
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Figure 3. Internal and External Nodes

3.2 Connectivity

Previous results (Kauffman, 1984) suggest that the average number of input ares per
node is an important determinaut of a network’s dynamical properties. Figures 4 and 5
show the average number of input arcs per internal node. The first figure shows the i verage
for both internal and external arcs, while the second one cousiders only those arcs coming
from other internal nodes. As expected, the use of more #s in the conditions signiticantly
increases the amount of connectivity. The average number of arcs also iucreases with
the number of classifiers in the system. For small numbers of classificrs- where small
is relative to the number of potential messages ~the average munber of inputs should
not change with additional classifiers. However, as the number of classifiers relative to
potentinl messages increases, multiple classifiers sharing the same internal node result in
greatly increased connectivity. Figure 4 indicates that pass-through inhibits connectivity.



This occurs because a higher number of internal nodes are created from pass-thrcugh for
the different possible output messages, and they share the same number of connections.
One unexpected result of pass-through is an increase in the internal to interral node
connectivity (see Figure 5). With pass-through, tbe ratio of internal to external nodes
in the system increaves, and thus a randem set of connections will have a higher rate of
internal connections.
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Figure 4. Mean Total Input Arcs per Internal Node

Another measure of internal connectivity is *he property of self-sustaining activity (see
Section 2). To test this property, all internal nodes were initialized to State 1 and the
network was iterated until it reached a state cycle or activity died out (all nodes in State
0). Activity in sparsely connected networks will tend to die out, and highly connected
networks will be self-sustaining. Once a self-sustaining cycle begins, it will continue in the
absence of uny exogenous inputs. Figure 6 shows the proportion of networks from different
classifier system configurations that have self-sustaining components. Figure 6 indicate
that a rapid transition occurs from systems without self-sustaining components to those
that do have them. The average size of a self-sustaining cycle (the number of nodes active
in the self-sustaining state cycle) is shown in Figure 7. This figure indicates a potential
for rapid growth and saturution of internal networks.

3.9 Boolean Functions

The potential for messages to become frozen either on or off depends on the percentage
of ones in the Boolean function associated with that message node (see Scction 2 4). As
the measure of “internal homogeneity” (Kauffman, 1984, p. 149) moves away from 50%.
networks tend to exhibit large “frozen components” in which the states of nodes become
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locked. For two-condition classifiers without negntion that do not have pass theongh, the
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percentage of one's in the truth table is givea by

(™ -2t -1)

Pl - 2m+n '

1)

where m and n denote the nnmber of messages that could possibly match the first and
second conditions respectively. This equation assumes that the set of matching messages
for the two conditions is disjoint.* If the second condition is negated, then

(2™ - 1)(1)

m= om+n ' ("))

Similar evoressions can be written for Boolean functions that contain ciauses for multiple
classifiers (i.e., when two or more clagsifiers share an output node), multiple classifiers tint
have identical conditions, etc.. More complicated expressions can be derived for elassitiers
that violate the assumption of disjointness among conditions.

Figure & graphs the proportion of ones using Equation (1) nad nssuming that 0 n
Under these conditious a very narrow range of values exists that nvoids frozen components.
If the percentage of ones in a node’s truth table is between 30-70% then the probnbility of
that node freezing is low. Assuming that Equation (1) is a rensonnble approximantion, the
number of #s in each condition that will prevent frm-zing 18 na follows (f, ¢ imply freese,

Y The logic of lh! equalion s as (nlluwl the hrst umuhlum wnll not ht- true |I| all of llu' m conditione are [ilae
(mince 1t 10 Lha disjunction of possible matching inessagen) and therefore 1t will be true for 2™

1 of s possibie
states Similacly, the second conditian wall hold for 2™ 1 of its states Thus they will hulh howl (and the
full Boolean function will be true) for (2™ 1R2™ 1) ont of the 2™ qlates

1



not freeze respectively):

01 2 >3
0 f » = *
1 ¥ ok * f
2 «» « f f
23\« f f f

Thus, if the first ~ondition has no #s the node will be active when the second condition
has at least one #. If the first condition has 2 #s then freezing will occur when the second
condition has more than 1 #. The actual distribution of #s in each condition can be
controlled when the syst2m is initialized or through biases in the learning operators. These
resu’ts suggest that classifier systems are highly sensitive to the proportion of #s iu the
population and that the nature of this sensitivity should be studied carefully. Preliminary
analysis indicates that if #s are chosen randomly with probability 0.25 then about 33% of
8-bit system nodes and 95% of 16-bit system nodes will be frozen. With a 0.50 probability
almost all of the nodes will be frozen in either system.
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Figure 8. Percent of Ones in the Truth Table Using Equation (1) (n = m)

3.4 Learming

An important question is how the structurnd properties of networks ditfer for networks
corresponding to randomly genernted claasitier systems nnd for elnssifier systems that have
evolved under learning. We have obtained several pairs of classifier sets (before nnd after
lenrning) and are in the process of compnring their structural properties. The fival pape
will present data and diseuss the resnlts of this comparison.

12



lJ

Another aspect of learning is how stable a classifier system is to the operations of the
genetic algorithm. It is important, for example, that a randoin mutation or cross-over be
capable of having a measurable effect on the overall system, but that it not completely
disrupt all ongoing activity. In Boolean network terminology, it would be interesting
to know whether one genetic algorithm operation were capable of unfreezing a set of
frozen components (or freezing a set of unfrozen components). More generally, we are
iuterested in the expected amount of perturbation caused by the application of the learning
operators. This can be measured by comparing the dynami-s of networks before and after
the application of genetic operators.

3.5 Ongoing Work

The results reported here are partial, and we expect to supplement them with a variety
of further experiments.

We are currently completing the studies of how basic classifier configurations relate 1o
basic structurel properties in Boolean networks. As part of this work it will be important
tc consider larger systems with 16 and 32 bits and work out the scaling relations between
various-sized systems. There is a possibility of using the Connection Machine for the larger
experiments. Once the basic structural properties are understood, it will be possible to
carry out the actual dynamic analysis of the networks using RBNs.

The experiments to date have been conducted using the simple mapping between clas-
sifier systems and Boolean networks. Using the extended mapping, ‘vith restricted message
lists and bidding, is an area of future investigation.

Another area of active investigation is determining the frequencies of 1's in Boolean
functions corresponding to actun! ciassifier systems. Quce these frequencies are understood,
it will be possible to assess the effect that frozen components are having on running classitier
systeins.

These basic studies are requisite to a careful investigation of how the Boolean networks
differ before and after learning which we expect will be one of the most revealing aspects
of this work.

4. Discussion

The methodology and specific results deseribed i Sections 2 and 3 have many unpli
cations, some technical and some of n more generul nature,

Of direct consequence, are the implications for the design of classifier systems. Con
straints on parameter settings are already emerging from the results of Section 3 and
vontinued work in this direction should lead te a theoretical treantment of thas ssae, By
comparing initial classifier sets with tin-] classitier sets (both those that have suecessfully
solved a problem and those that have 1.0t), we also hope to analy ze learning imechamisimes
from n new perapective. Oue open aestion i whether learning enuses aclassitier system
to change its topology significantly or whether it is simply learning to use existing stiae
tures (cycles attractors, ete.). Learning conld be tryiug to overcome neatly unposable
constraints imposed by the structural properties of the Boolean networks, T this cise,
changes in the underlying architecture might be approprinte to improve performanee of
the learmng nlgorithmy, Alteruntively, careful study of classifier system dynanes conld
revenl unexploited structures and the lenerning could be tatlored 1o explat the imherent
structures.
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The mapping between classifier systems and Boolean networks is for analysis purposes
only. Because representing every possible link in a system explicitly is highly inefficient, the
mapping of Section 2 is not a likely alternative to classifier systems. However, Alternative
network mappings exist, and they may be useful either for understanding other aspects of
classifier systems or in their ewn right as models for cognitive activity.

The evidence that classifier system performance is highly sensitive to the proportion
of #s suggests that an annealing (Kirkpatrick et al., 1983) approach to this parameter
might be useful. In initial stages of learning, higher connectivity would be advantageous
as the system emphasizes exploration and identifies high-level default behaviors. At later
periods, as the system refines its model of the environment with more specific rules, a lower
proportion of #s would be more appropriate. This annealing scheme could be implement-a
by biasing the genetic operators.

The formation of default hierarchies is an important and controversial aspect of classi-
fier systems. An area of future investigation is to study the fo-mation of default hierarchies
using the Boolean network framework. For example, the structural properties of networks
built from classifiers using schemata with one defined bit (e.g., 1% #### ##) could be
compared with those built with two bits defined, etc. Further, the dynamics of transitions
from 1-bit to 2-bit schemata could be studied.

The distinction between internai and external nodes for Boolean networks raises the
possibility that a system could learn to use its external nodes (i.e., the c¢nvironment)
0s a form of external memory. In this scenario, a classifier system might produce an
external message that affected its environmnent in some predictable way (e.g., causing the
environiment to produce some input message at a later time) and rely on that effect for
later processing. Two examples illustrate how common this use of external memory is
in the natural world, alarm clocks and pheromones. People do not have relinble internal
clocks, but by setting an alarm clock before retiring (performing an action in an external
environment) they can rely on its predictable behavior to awaken them at some tme
in the future and begin executing some internal process. Likewise, ants deposit various
pheromones in their environment which they use later as trail markers to tind the way
back to their nest.

A dynamical systems approach to understanding learning phenomena and other cop
nitive activity may be very insightful. Until recently, there has been little theoretical work
on learning systems. Most research has been of the “proof of principle” form in which a
particular learning system is used to solve some example problem. Current theoretical e
search tends to emphasize what or how efficiently different systems can learn, but says little
about how learning systems really work. The dynamical systems approach deseribed here
provides a way to answer these kinds of questions. Further, it can be applied to systems
that cannot be easily understood analytically, either because they are too compheated or
too messy. This paper applies the methodology to classifier systems, but similar innppings
can be defined for neural networks and other learning schemes. Ouce n mnppig has been
defined, the techuiquen deseribed heve will ceadily apply. The unitication of these seennngly
disparnte systems into a single class of models imay have interesting consequences.

8. Conclusions

Classifier systems are quite complicated. A standard elassifier system contmns nocom
putationally complete interior performance element, o bidding mechaman, two leatnmy,

R
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algorithms, and an input/output interface. Each of these parts interacts with the rest
of the system in non-trivial ways. The complexity of the classifier system architecture is
not surprising because it is intended to support a wide spectrum of activity. However,
that complexity makes it difficult to understand precisely how each part of the system 1s
contributing to overall performance.

The mapping from class:fier systems to random Boolean networks provides a theoretical
approach to the study of classifier system components and their interactions. The dynamnic
behavior of classifier systems is dominated by emergent properties which greatly infHuence
their performance. Various corfigurations of classifier systems have different dynamice
properties that vary in predictable ways. The general methodology derived here provides
insights into the behavior of current classifier systems, and guidance for future extensions.
More generally, the methodology is applicable to other learning systems such as neural
networks, and it suggests several new avenues for exploring cognitive phenomena.
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